

Renewable Voltage Regulation, Transformer Parameters, and a Tapping Tradeoff

Jonas Kersulis, Ian Hiskens

Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI

Introduction

- Load-tap-changing (LTC) transformers regulate voltage in subtransmission and distribution networks.
- LTCs must be used sparingly: excessive tapping hastens costly failure. •
- Renewable energy fluctuations increase LTC tapping frequency.
- Renewable voltage regulation diverts this effect upstream (Figure 1).

Simulation

- Let P_a be simulated wind or solar data from NREL.
- Let Q_a , renewable voltage support, be limited to $\left[-Q_g^{lim}, Q_g^{lim}\right]$.
- Simulate for 1 year at 1-min resolution (one power flow per minute).
- Count LTC taps and plot distribution vs. subtransmission.

Trade-off Curves

Repeat simulation for many values of Q_a^{lim} to obtain many points.

		-				 		
10		 	 		 	 		
	0	1	1	1	1		•••	wind
	- THAN							Solar
35	.0,0	2	, , ,			 		
· · ·		1	1					

Models

otherwise 0

LTC Setpoint Sensitivity

- Vary voltage setpoint for an LTC, generate several trade-off curves.
- Color points according to $V_{metric} = ||V_{actual} V_{desired}||$.

$$T(t) = \begin{cases} T(t - \Delta t) + 1 & \text{if } d(t) = 1 \text{ and } c(t) > C \\ T(t - \Delta t) - 1 & \text{if } d(t) = -1 \text{ and } c(t) < -C \\ T(t - \Delta t) & \text{otherwise, and when } T \text{ at limit} \end{cases}$$

Inverse-delay model: ILTC

$$\frac{de(t)}{dt} = \begin{cases} \frac{1}{\tau} (\Delta V(t) - DB) & \text{if } \Delta V(t) > DB \\ \frac{1}{\tau} (\Delta V(t) + DB) & \text{if } \Delta V(t) < -DB \end{cases}$$
$$e(t) = \begin{cases} e(t - \Delta t) + \frac{de(t)}{dt} \Delta t & \text{if } T(t) = T(t - \Delta t) \\ 0 & \text{otherwise, and when } V & \text{in deadband} \end{cases}$$
$$T(t) = \begin{cases} T(t - \Delta t) + 1 & \text{if } e(t) > \alpha \\ T(t - \Delta t) - 1 & \text{if } e(t) < -\alpha \\ T(t - \Delta t) & \text{otherwise, and when } T & \text{at limit} \end{cases}$$

Parameter	Description	DLTC Value	ILTC Value		
α	Tap size	5/8%			
T _{lim}	Tap limits	(-16,16)			
V _{sp}	Setpoint	1.02 pu sub., 0.96 pu dist.			
DB	Deadband	2 taps (±1.25%)			
C	Max countor value	120c cub 240c dict	ΝΙΛ		

Figure 4: Varying distribution voltage setpoint.

Conclusions

- Renewable voltage support balances the effects of fluctuation between distribution and subtransmission LTCs.
- The trade-off is nuanced even for simple networks.
- Understanding relationships between parameters enables extension to more general networks.
- The tapping trade-off calls for sophisticated joint tap minimization.

Acknowledgements

